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Involved Methods & Fields of Study
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Sensitivity Analysis and Analysis of Alternatives
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Sensitivity Analysis and Analysis of Alternatives

Sensitivity Analysis:

o Global sensitivity - Stochastic Kriging or Gaussian Process (optimisation) el

.,-si nand
o Local sensitivity - low-order polynomials (main effects/two-way interactions) Anal?rsis of
@ Sub-system marginal contribution to operational effectiveness simulation
Experiments
@ Combat multipliers (combined arms combat) e e
@ Robustness of point-scenario insights to uncertain parameters
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Sensitivity Analysis and Analysis of Alternatives

Sensitivity Analysis:

o Global sensitivity - Stochastic Kriging or Gaussian Process (optimisation)

@ Sub-system marginal contribution to operational effectiveness
@ Combat multipliers (combined arms combat)

@ Robustness of point-scenario insights to uncertain parameters

Analysis of Alternatives:

o Discrete set of competing systems (e.g. tender evaluation)
@ All pairwise comparisons - generally produces only partial order
@ Selection of the best or subset containing the best

@ Ranking analysis - score-based or partition-based
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Linear Regression

With m; replications at each design point x; fit using OLS criterion. The sum of squared residuals is:

SSR
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Linear Regression

With m; replications at each design point x; fit using OLS criterion. The sum of squared residuals is:

q
SSR = ZZ — W) whereff,:Zx;jﬁj,i:L...,n
i=1 r=1 j=1
2
= Z Z X/kﬁk + 2X,kﬁk Z x5 + Z xiBi | — 2w Z X3 + (Wir)2
=1 r=1 j=1,%#k =17k J=1

Differentiating the SSR with respect to the k—th regression parameter gives:

mj

OSSR _
8/3’ = ZZx,km, Z x,,ﬁ, 2 Zx,km,w,, =1,...,9 where w; = Z w,-,/m,-.
k

=1 r=1
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Parameter Confidence Intervals

Since B/-OLS = >, Ljw; where L = (X'MX)~"X’'M and treating w; as random variables:
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Parameter Confidence Intervals

Since B/-OLS = >, Ljw; where L = (X'MX)~"X’'M and treating w; as random variables:

n n n
var(BjOLs) = var(z LiW;) = Z Z LiLircov(W;, Wy)
i=1

i=1 =1
n n min(m;,m, )
= ZZL,-,-L,-,-/ X Z cov(Wir, W) /(mimy)
=1 /=1 =1
n n
= Z Z LiLjroy / max(m;, my) where oy = cov(W;, Wy ).

i=1 =1
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Parameter Confidence Intervals

since 3°S = "7 Lyw; where L = (X'MX) ™' X'M and treating #; as random variables:

n n n
var(B°) = var (Z LiW;) = Z Z LiLyrcov(W;, W)
i=1 =1 =1
n n min(m;,m, )
= Z Z LjiLjr < Z cov(Wir, W)/ (mimy)
i=1 j'=1 r=1
n n
= Z Z LiLjroy / max(m;, my) where oy = cov(W;, Wy ).

i=1 =1

DST | Science and Technology for Safeguarding Australia



Independent and Identically Distributed Simulation Output
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Independent and Identically Distributed Simulation Output
The covariance matrix simplifies X, = o%(w)l and either:

o o?(W) =~ s*(w) = >_"_,(m; — 1)s?(w;) /(N — n) pooling n sample variance estimators, or

o o? (W)~ MSR=> " >" (§i — wi)?/(N — q) based on the residuals of the OLS regression.
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Independent and Identically Distributed Simulation Output

The covariance matrix simplifies X, = o%(w)l and either:
o o?(W) =~ s*(w) = >_"_,(m; — 1)s?(w;) /(N — n) pooling n sample variance estimators, or

o o? (W)~ MSR=> " >" (§i — wi)?/(N — q) based on the residuals of the OLS regression.

However Kleijnen (2015) used:

i=1 i=1 r=1

MR =" m(— W /(N—a) =3 m, [2(% - W,.,)/m,.] /(N ).
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Independent and Identically Distributed Simulation Output

The covariance matrix simplifies X, = o%(w)l and either:
o o?(W) =~ s*(w) = >_"_,(m; — 1)s?(w;) /(N — n) pooling n sample variance estimators, or

o o? (W)~ MSR=> " >" (§i — wi)?/(N — q) based on the residuals of the OLS regression.

However Kleijnen (2015) used:

i=1 i=1 r=1

MR =" m(— W /(N—a) =3 m, [2(% - W,.,)/m,.] /(N ).

But numerator involves average residuals — risks underestimating the SSR (and MSR).
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Independent and Identically Distributed Simulation Output

The covariance matrix simplifies X, = o%(w)l and either:
o o?(W) =~ s*(w) = >_"_,(m; — 1)s?(w;) /(N — n) pooling n sample variance estimators, or

o o? (W)~ MSR=> " >" (§i — wi)?/(N — q) based on the residuals of the OLS regression.
However Kleijnen (2015) used:

n mj

"MSR' =Y m(ji —wi)?/(N—q) = Z m; [Z(}A’i - w,-,)/m,-] /(N —q).

=1 r=1

But numerator involves average residuals — risks underestimating the SSR (and MSR).

F _ MSR _ > it 2t (Wir — 31)?/(N — q) ‘
NN T 2(w) S o (wie — wi)? /(N — n)
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Common Random Numbers

With CRN as a Variance Reduction Technique m; = m and X, approximated by sample covariance so:

var(5%) ~ Z Z LiLy Z (wie — W) (wry = W)/ [m(m — 1))

i=1 j'=1
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Common Random Numbers

With CRN as a Variance Reduction Technique m; = m and X, approximated by sample covariance so:

var( ﬁOLS) ~ Z Z LiLy Z (wir — wi)(wy, — wy)/[m(m —1)].

i=1 j'=1

Kleijnen (2015) proposed alternative method inspired by classical text Law (2007).
Simply use mean and deviation of sample point estimates ﬂj;, = 27:1 L;w;.,. However:
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Common Random Numbers

With CRN as a Variance Reduction Technique m; = m and X, approximated by sample covariance so:

var(57°) ~ ZZ LiLje Z (wir — w,)(wir, — wyr)/[m(m — 1)].

i=1 j'=1

Kleijnen (2015) proposed alternative method inspired by classical text Law (2007).
Simply use mean and deviation of sample point estimates ﬂj;, = 27:1 L;w;.,. However:

B = ST B/ m = S SO Lywig/m = SO Ly = B and

o var(B) ~ S (B — BEYR/[m(m — 1)

o var(BM) & ST [0 Li(wy — W) /[m(m = 1)]

° Vaf(B,-LAW) Yot i LiCwie — wi) 320 L (wir, — Wy ) /[m(m —1)]

° Vaf(ﬁ,-LAW) Yoy 2oy Lk Yo (wir — W ) (wir, — W) /[m(m —1)] = Vaf(B,OLS)-
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Common Random Numbers

With CRN as a Variance Reduction Technique m; = m and X, approximated by sample covariance so:

var(5%) ~ Z Z LiLy Z (wie — W) (wry = W)/ [m(m — 1))

i=1 j'=1

Kleijnen (2015) proposed alternative method inspired by classical text Law (2007).
Simply use mean and deviation of sample point estimates ﬁj;, = 27:1 L;w;.,. However:

©

5LAW > Bf ffm= 30 o i /m =30 LW = B,‘OLS and

var(BH) = S (B — BHYY2/[m(m — 1)]

var(BH) ~ ST [0, Li(wi — )7 /[m(m — 1)]

Vaf(B,-LAW) A Y iy Lilwie — i) 20—y L (wire — Wy ) /[m(m — 1)]

Vaf(ﬁ,-LAW) oy Doy Ll >0 (wie — Wi ) (wiry — Wy ) [[m(m — 1)] = Vaf(BjOLS)-
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Normality

Rarely do our combat simulation output metrics conform to a Normal distribution.
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Normality

Rarely do our combat simulation output metrics conform to a Normal distribution.
@ An approach suggested by Kleijnen (2015) is to use Jack-Knifing (Tukey, 1958):

n m
A ~ ~ _ . Wi
J]‘;r = mﬁj - (m - 1),8/;_r where ﬂj;_, = E L/','W,';_r and Wi —r = E ml_r 1 .
i=1 r'=1;r#r
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Normality

Rarely do our combat simulation output metrics conform to a Normal distribution.
@ An approach suggested by Kleijnen (2015) is to use Jack-Knifing (Tukey, 1958):
n m
Jir = mBj —(m— 1)3,';_, where Bj;_, = Z Liwj._, and W;._, = Z
i=1 r'=1;r#r

Wiy
m—1

@ However:

n n
G = mY Lw—(m—1)> LW
i=1 i=1
n
Z Lji Z Wip — Z Wi | = Z Liwi = A]_(;JrLS'
i=1

r'=1 r'=1;r'#r
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Normality

Rarely do our combat simulation output metrics conform to a Normal distribution.
@ An approach suggested by Kleijnen (2015) is to use Jack-Knifing (Tukey, 1958):
n m
Jir = mBj —(m— 1)3,';_, where Bj;_, = Z Liwj._, and W;._, = Z
i=1 r'=1;r#r

Wiy
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@ However:

n n
G = mY Lw—(m—1)> LW
i=1 i=1
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Normality

Rarely do our combat simulation output metrics conform to a Normal distribution.
@ An approach suggested by Kleijnen (2015) is to use Jack-Knifing (Tukey, 1958):

n m
" " " . . W
Jir = mB; — (m —1)Bj.—, where 3;,_, = E Liw;.—, and W.—, = g mﬁ r
=1 r'=1;r#r

@ However:

n n
G = mY Lwi—(m—1)> LW
i=1 i=1
n
= Z Lji Z Wi — Z Wi | = Z Liw;y = A]';O,-LS-
i=1

r'=1 r'=1;r"#r
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Regression Summary

@ If output variance is not homogeneous (depends on design points x;) and if output is not
independent (through CRN) and not normally distributed (often with combat simulations) ...
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Regression Summary

@ If output variance is not homogeneous (depends on design points x;) and if output is not
independent (through CRN) and not normally distributed (often with combat simulations) ...

o then Law (2007) approach is in fact identical to both OLS and Jack-Knifing in Kleijnen (2015).
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Regression Summary

@ If output variance is not homogeneous (depends on design points x;) and if output is not
independent (through CRN) and not normally distributed (often with combat simulations) ...

o then Law (2007) approach is in fact identical to both OLS and Jack-Knifing in Kleijnen (2015).

@ Confidence intervals for the regression coefficients can be calculated from:

n
B = ZLj;W;, j=1,....q

var(f) ~ ZZL,,LJ,/Z(W,,— Nwi, —wy)/[m(m—1)], j=1,....,q

i=1 j'=1
m

L = (Xx)7'X and W,-:ZW,-,/m, i=1,...,n.

r=1
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Comparative Sensitivity

Analysis of Alternatives (AcA) more common. How to characterise sensitive parameters here?
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Comparative Sensitivity

Analysis of Alternatives (AcA) more common. How to characterise sensitive parameters here?
@ Individual alternative simulation output might be sensitive, but comparatively insensitive.
o Logistic regression (two alternative case) P(Z = 1]x) = (1 + exp[—ﬁTx])_1?
o Generate sample data z; = 1 if reject Hy : (41; = fo; in favour of Hy @ 4 > Lo
o odds(x) = P(Z = 1|x)/[1 — P(Z = 1|x)] and exp(3;) = odds(x + e;)/odds(x).
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Comparative Sensitivity

Analysis of Alternatives (AcA) more common. How to characterise sensitive parameters here?
@ Individual alternative simulation output might be sensitive, but comparatively insensitive.
o Logistic regression (two alternative case) P(Z = 1]x) = (1 + exp[—ﬁTx])_1?
o Generate sample data z; = 1 if reject Hy : (41; = fo; in favour of Hy @ 4 > Lo
o odds(x) = P(Z = 1|x)/[1 — P(Z = 1|x)] and exp(3;) = odds(x + e;)/odds(x).

Simple counterexample:
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Comparative Sensitivity

Analysis of Alternatives (AcA) more common. How to characterise sensitive parameters here?
@ Individual alternative simulation output might be sensitive, but comparatively insensitive.
o Logistic regression (two alternative case) P(Z = 1]x) = (1 + exp[—ﬁTx])_1?
o Generate sample data z; = 1 if reject Hy : (41; = fo; in favour of Hy @ 4 > Lo
o odds(x) = P(Z = 1|x)/[1 — P(Z = 1|x)] and exp(3;) = odds(x + e;)/odds(x).
Simple counterexample:
o IfP(Z=1|x) =1/3and §; = 1 — odds(x) =1 : 2and odds(x + ;) =2.72 : 2 = 1.36 : 1.
@ Preference (decision) has changed from alternative 0 to alternative 1.
o If, however, P(Z = 1|x) = 2/3 and 3, = 1. Then odds(x) = 2 : 1 and odds(x + €;) = 5.44 : 1,

o Preference (decision) has not changed from alternative 1.
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Comparative Sensitivity

Analysis of Alternatives (AcA) more common. How to characterise sensitive parameters here?
@ Individual alternative simulation output might be sensitive, but comparatively insensitive.
o Logistic regression (two alternative case) P(Z = 1]x) = (1 + exp[—ﬁTx])_1?
o Generate sample data z; = 1 if reject Hy : (41; = fo; in favour of Hy @ 4 > Lo
o odds(x) = P(Z = 1|x)/[1 — P(Z = 1|x)] and exp(3;) = odds(x + e;)/odds(x).
Simple counterexample:
o IfP(Z=1|x) =1/3and §; = 1 — odds(x) =1 : 2and odds(x + ;) =2.72 : 2 = 1.36 : 1.
@ Preference (decision) has changed from alternative 0 to alternative 1.
o If, however, P(Z = 1|x) = 2/3 and 3, = 1. Then odds(x) = 2 : 1 and odds(x + €;) = 5.44 : 1,
@ Preference (decision) has not changed from alternative 1.
Unlikely that logistic regression (or multinomial regression for the general K > 2 case) will work.
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Ranking Sensitivity Measure

Score-based method of Villacorta & Séez (2015):
K +1, ifaccept Hy @ g > [
Ski = Z zi;i Where Zzg; = <0, if accept Hy © iy = Wi

=k 1 —1, ifaccept Hy @ g < Wi
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Ranking Sensitivity Measure

Score-based method of Villacorta & Séez (2015):

. +1, ifaccept Hy : fi > [
Ski = Z Zji where Zzg = 0, ifaccept Ho : g = L
=k 1 —1, ifaccept Hy @ g < Wi

How to measure similarity/distance between s; and s ?
o Convert to ranks: 0;(k) = rank(sk,s;) so o;(-)is a permutation of {1,...,K}.
o Weighted Spearman’s Footrule: ¢, = 2521 dikpirk|oi(k) — oy (k)|. (Dolgun et al., 2018).

|ski—s47|
2(k—1)

P
o Inter-rater disagreement: g/, = ( ) (Gwet, 2014).

) —1/K
@ Head or Tail Position: p;, = (M) (Kumar & Vassilvitskii, 2000).
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Ranking Sensitivity Measure

Score-based method of Villacorta & Saez (2015):

. +1, ifaccept Hy 1 g > ;i
Ski = Z Zji where Zzg = 0, ifaccept Ho : g = L
=k 1 —1, ifaccept Hy @ g < Wi

How to measure similarity/distance between s; and s ?
o Convert to ranks: 0;(k) = rank(sk,s;) so o;(-)is a permutation of {1,...,K}.
o Weighted Spearman’s Footrule: ¢, = 2521 dikpirk|oi(k) — oy (k)|. (Dolgun et al., 2018).

|ski—s47|
2(k—1)

P
o Inter-rater disagreement: g/, = ( ) (Gwet, 2014).

, —1/K
@ Head or Tail Position: p;, = (M) (Kumar & Vassilvitskii, 2000).
This provides a scalar measure of sensitivity of ranking vector between two design points, x; and x;/.

@ How do we use that to isolate the sensitivity of ranking vector to an individual parameter x;?
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Full Factorial Design Ranking Regression

X1 X2 X, X K y
Xy,
Xit. | X1 X T XiK | Vit
X,‘j_ X,'I.1 X,'j.2 —1 XiiK y’;—
XoK,

Table: Full Factorial Design for Univariate Response

DESIGN AND ANALYSIS OF
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Full Factorial Design Ranking Regression

DESIGN AND ANALYSIS OF

X1 X2 Xj 7 XK y
Xy,
XI/—‘r Xi/'1 Xijz . e +1 e Xin ylj_"_
X,‘j_. X,'I.1 X,'j.2 s —1 s XiiK y’;—
XoK,

Table: Full Factorial Design for Univariate Response

o For orthogonal designs 3 = (X'X)~' X'y becomes ﬁAj =xy/2"
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Full Factorial Design Ranking Regression

DESIGN AND ANALYSIS OF

X1 X2 Xj 7 XK y
Xy,
XI/—‘r Xi/'1 Xijz . e +1 e Xin ylj_"_
X,‘j_. X,'I.1 X,'j.2 s —1 s Xin y’;—
XoK,

Table: Full Factorial Design for Univariate Response
o For orthogonal designs 3 = (X'X)~' X'y becomes ﬁAj =xy/2"
o For balanced designs, can express as [3; = s 2 (Vi — ¥i—) = 3= 2 O
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Full Factorial Design Ranking Regression

DESIGN AND ANALYSIS OF

X1 X2 Xj " XK y
Xy,
xlj_"_ X,'/.1 Xijz . e +1 “e Xi/K y’l+
X,‘/._‘ X,'I.1 X,‘j.2 s —1 s Xin y,!_
XoK,

Table: Full Factorial Design for Univariate Response
o For orthogonal designs 3 = (X' X) ™' X'y becomes /3; = xy/2k.
@ For balanced designs, can express as 3,- = = i — Vi) = 5= 2 O
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Full Factorial Design Ranking Regression

@ For orthogonal designs B =
o For balanced designs, can express as 3,- = 2K1—_1 > i(yir

X1 X2 Xj - XK y
X1,
Xit. | X1 X T Xk | Vi
X,‘/._ X,'I.1 X,'j.2 —1 Xin y’;—
XokK

Table: Full Factorial Design for Univariate Response

(X’ X)~" X"y becomes ,BA]' =xy/2"

@ For Full Factorial design simply replace 5,'j+;,'/._ with 65_1;,/_

Yi,—) =

Ek 1 Witi—k

DESIGN AND ANALYSIS OF

1
=7 2 Ojij—

71+ (k) — 0y (k).
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Fractional Factorial Design Ranking Regression?

X 1 X2 X, j X K—p X.K—p+1 X K y
Xq.
Xit. | X1 X2 +1 Xik—p || Xj+Kk—p+1 Xi+K | Yi+
Xj— | Xt Xje — Xik—p || Xi—K—p+1 Xi—K | Vi~
Xok—p

Table: Fractional Factorial Design for Univariate Response
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Fractional Factorial Design Ranking Regression?

X 1 X2 X; - XK-p X.K—p+1 T X K y

X1.
Xjt. | Xjr Xz oo A1 e Xkp || Xjdk—pt1 0 Xtk | Vit

Xi— | Xpt X2 oo =1 o Xk—p || Xi—k—p+1 Xj—k | Vi—

XZK—p.

Table: Fractional Factorial Design for Univariate Response
o For orthogonal and balanced designs, still 5; = 5= > /(Vj+ — Vi—) = z=o=r 2 Ojtsi—-

i
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Fractional Factorial Designh Ranking Regression?

X 1 Xo - X; -+ Xk—p X.K—p+1 Co X K y

X1,
Xir. | X0 X2 o A1 o Xik—p || Xj+k—p+1 0 Xtk | Vit

Xj— | X1 Xz o =1 o Xik—p || Xj—k—p+1 T Xj—k | Vi—

sz—p.

Table: Fractional Factorial Design for Univariate Response
. A 1 . 1
@ For orthogonal and balanced designs, still 3; = == > _,(Vi+ — ¥i—) = =57 2 Ojtsi—
°
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Fractional Factorial Designh Ranking Regression?

X 1 X2 - X; - XK-p X K—pt1 T X K y
X1,
Xit. | X1 Xjg v +1 - Xik—p || Xitk—pt1 0 XKk | Vit
Xj— | X1 Xz o =1 o Xik—p || Xj—k—p+1 T Xj—k | Vi—
XoKk—p,

Table: Fractional Factorial Design for Univariate Response
. A 1
o For orthogonal and balanced designs, still 3; = == > _/(yj+ — ¥;—) =

i—

.
== i O

o For first K — p parameters, simply ignore remaining p columns and j;+-, j— chosen as before.
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Fractional Factorial Designh Ranking Regression?

X 1 Xo - X; -+ Xk—p X.K—p+1 Co X K Yy

X1,
Xir. | X0 X2 o A1 o Xik—p || Xj+k—p+1 0 Xtk | Vit

Xj— | X1 Xz o =1 o Xik—p || Xj—k—p+1 T Xj—k | Vi—

sz—p.

Table: Fractional Factorial Design for Univariate Response

@ For orthogonal and balanced designs, still Bj- = ﬂjﬁ i+ —y-) =

y

.
== i O

o For first K — p parameters, simply ignore remaining p columns and j;+-, j— chosen as before.
@ For K — p + j-th parameter, use its column for one of the first K — p columns whose parameter was
used to construct it (via the generator words).
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Summary

Sensitivity Analysis via low-order polynomial meta-models fit using OLS regression and Factorial designs:
@ Combat simulations often depart from (all) standard NIID assumptions:

o Non-independently distributed (via use of CRN).
o Non-identically distributed (variance depends on design point).
o Non-normally distributed (skewness).

@ Kleijnen (2015) text suggested different remedies, but they are actually equivalent.

@ Kleijnen (2015) also incorrectly derived lack-of-fit F-statistics in white-noise case.
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Summary

Sensitivity Analysis via low-order polynomial meta-models fit using OLS regression and Factorial designs:
@ Combat simulations often depart from (all) standard NIID assumptions:

o Non-independently distributed (via use of CRN).
o Non-identically distributed (variance depends on design point).
o Non-normally distributed (skewness).

@ Kleijnen (2015) text suggested different remedies, but they are actually equivalent.
@ Kleijnen (2015) also incorrectly derived lack-of-fit F-statistics in white-noise case.
Sensitivity Analysis of Analysis of Alternatives new research topic:
@ Borrow distance metrics from Information Retrieval algorithm comparisons.
@ Exploit d-structure and ceteris paribus principle of Full Factorial designs.
© Future work: test effectiveness of approach; examine other orthogonal/balanced designs; improve

ranking sensitivity measure.

15 BB EREBERBRREBBRERSRBERCERBRBS BB B B BB BBBL R BB DST | Science and Technology for Safeguarding Australia



