

Military Simulation Analytics: Towards a Sensitivity Analysis when Conducting Analysis of Alternatives

Andrew Gill

Defence Science & Technology Group, Australian Department of Defence International Symposium on Military Operational Research (ISMOR)

Uk

17 — 20 Jul 2018

29th June 2018

Improving Force Design Force Structure Review

Force Structure Review (FSR) process:

Senior leadership applying military judgement over force options through seminar wargaming

Complexity of modern ops → difficult to rely on intuition for Force Design

- Many factors affect modern ops
- Difficulty in assessing impact of new capability (yet to be developed)
- Future wars fought differently to past

SR2 will deliver a sim capability for exploring & developing complex whole-of-force operating concepts

Operating Concepts for Exploration

- Force Level Electronic Warfare
- Maritime Force Defence
- Space Concepts
- Cooperative Engagement
- Information Age Combat Model
- Cyber Warfare
- **New Operating Concepts**

Involved Methods & Fields of Study

Future Operating

- 1. FLEW: Force Level EW
 2. CEC: Cooperative
- Engagement Capability
- 3. Space Concepts
- 4. Maritime Force Defence
- 5. Cyber Warfare
- 6. New Concept 2

M&S

- Develop novel modelling strategies to represent abstract concepts in HPCsim
- Resolving computational intractability in large scale simulation (many factors)

DoE

Analysis & Visualisation

- Develop new analysis strategies for high dim problem spaces (big data)
 - Many response vars.
 - Many design points
 Many iterations @ a
 - Many iterations @ a design point

Sensitivity Analysis and Analysis of Alternatives

Sensitivity Analysis and Analysis of Alternatives

Sensitivity Analysis:

- Global sensitivity Stochastic Kriging or Gaussian Process (optimisation)
- Local sensitivity low-order polynomials (main effects/two-way interactions)
- Sub-system marginal contribution to operational effectiveness
- Combat multipliers (combined arms combat)
- Robustness of point-scenario insights to uncertain parameters

Sensitivity Analysis and Analysis of Alternatives

Sensitivity Analysis:

- Global sensitivity Stochastic Kriging or Gaussian Process (optimisation)
- Local sensitivity low-order polynomials (main effects/two-way interactions)
- Sub-system marginal contribution to operational effectiveness
- Combat multipliers (combined arms combat)
- Robustness of point-scenario insights to uncertain parameters

Analysis of Alternatives:

- Discrete set of competing systems (e.g. tender evaluation)
- All pairwise comparisons generally produces only partial order
- Selection of the best or subset containing the best
- Ranking analysis score-based or partition-based

Linear Regression

With m_i replications at each design point \mathbf{x}_i fit using **OLS criterion**. The sum of squared residuals is:

$$SSR = \sum_{i=1}^{n} \sum_{r=1}^{m_i} (\hat{y}_i - w_{ir})^2 \text{ where } \hat{y}_i = \sum_{j=1}^{q} x_{ij} \hat{\beta}_j, i = 1, \dots, n$$

$$= \sum_{i=1}^{n} \sum_{r=1}^{m_i} \left[(x_{ik} \hat{\beta}_k)^2 + 2x_{ik} \hat{\beta}_k \sum_{j=1; \neq k}^{q} x_{ij} \hat{\beta}_j + \left(\sum_{j=1; \neq k}^{q} x_{ij} \hat{\beta}_j \right)^2 - 2w_{ir} \sum_{j=1}^{q} x_{ij} \hat{\beta}_j + (w_{ir})^2 \right].$$

Linear Regression

With m_i replications at each design point \mathbf{x}_i fit using **OLS criterion**. The sum of squared residuals is:

$$SSR = \sum_{i=1}^{n} \sum_{r=1}^{m_{i}} (\hat{y}_{i} - w_{ir})^{2} \text{ where } \hat{y}_{i} = \sum_{j=1}^{q} x_{ij} \hat{\beta}_{j}, i = 1, \dots, n$$

$$= \sum_{i=1}^{n} \sum_{r=1}^{m_{i}} \left[(x_{ik} \hat{\beta}_{k})^{2} + 2x_{ik} \hat{\beta}_{k} \sum_{j=1; \neq k}^{q} x_{ij} \hat{\beta}_{j} + \left(\sum_{j=1; \neq k}^{q} x_{ij} \hat{\beta}_{j} \right)^{2} - 2w_{ir} \sum_{j=1}^{q} x_{ij} \hat{\beta}_{j} + (w_{ir})^{2} \right].$$

Differentiating the SSR with respect to the k—th regression parameter gives:

$$\frac{\partial SSR}{\partial \hat{\beta}_k} = 2 \sum_{i=1}^n x_{ik} m_i \sum_{i=1}^q x_{ij} \hat{\beta}_j - 2 \sum_{i=1}^n x_{ik} m_i \overline{w}_i, \quad k = 1, \dots, q \quad \text{where} \quad \overline{w}_i = \sum_{r=1}^{m_i} w_{ir} / m_i.$$

Normal equations for the OLS estimator: $X'MX\hat{\beta}^{OLS} = X'M\overline{\mathbf{w}}$.

Parameter Confidence Intervals

Since
$$\hat{\beta}_i^{OLS} = \sum_{i=1}^n L_{ji} \overline{w}_i$$
 where $L = (X'MX)^{-1} X'M$ and treating \overline{w}_i as **random variables**:

Parameter Confidence Intervals

Since $\hat{\beta}_i^{OLS} = \sum_{i=1}^n L_{ii} \overline{w}_i$ where $L = (X'MX)^{-1} X'M$ and treating \overline{w}_i as **random variables**:

$$var(\hat{\beta}_{j}^{OLS}) = var(\sum_{i=1}^{n} L_{ji}\overline{W}_{i}) = \sum_{i=1}^{n} \sum_{i'=1}^{n} L_{ji}L_{ji'}cov(\overline{W}_{i}, \overline{W}_{i'})$$

$$= \sum_{i=1}^{n} \sum_{i'=1}^{n} L_{ji}L_{ji'} \times \sum_{r=1}^{\min(m_{i}, m_{i'})} cov(W_{ir}, W_{i'r})/(m_{i}m_{i'})$$

$$= \sum_{i=1}^{n} \sum_{i'=1}^{n} L_{ji}L_{ji'}\sigma_{ii'}/\max(m_{i}, m_{i'}) \text{ where } \sigma_{ii'} = cov(W_{i}, W_{i'}).$$

Parameter Confidence Intervals

Since $\hat{\beta}_i^{OLS} = \sum_{i=1}^n L_{ii} \overline{w}_i$ where $L = (X'MX)^{-1} X'M$ and treating \overline{w}_i as **random variables**:

$$var(\hat{\beta}_{j}^{OLS}) = var(\sum_{i=1}^{n} L_{ji}\overline{W}_{i}) = \sum_{i=1}^{n} \sum_{i'=1}^{n} L_{ji}L_{ji'}cov(\overline{W}_{i}, \overline{W}_{i'})$$

$$= \sum_{i=1}^{n} \sum_{i'=1}^{n} L_{ji}L_{ji'} \times \sum_{r=1}^{\min(m_{i},m_{i'})} cov(W_{ir}, W_{i'r})/(m_{i}m_{i'})$$

$$= \sum_{i=1}^{n} \sum_{i'=1}^{n} L_{ji}L_{ji'}\sigma_{ii'}/\max(m_{i}, m_{i'}) \text{ where } \sigma_{ii'} = cov(W_{i}, W_{i'}).$$

This generalises and simplifies Kleijnen (2015) who treated $m_i = m$ and $m_i \neq m$ separately.

The covariance matrix simplifies $\Sigma_w = \sigma^2(w) \mathbf{I}$ and either:

•
$$\sigma^2(W) \approx s^2(w) = \sum_{i=1}^n (m_i - 1) s^2(w_i) / (N - n)$$
 pooling n sample variance estimators, or

•
$$\sigma^2(W) \approx MSR = \sum_{i=1}^n \sum_{r=1}^{m_i} (\hat{y}_i - w_{ir})^2 / (N-q)$$
 based on the **residuals** of the OLS regression.

The covariance matrix simplifies $\Sigma_w = \sigma^2(w) \mathbf{I}$ and either:

- $\sigma^2(W) \approx s^2(w) = \sum_{i=1}^n (m_i 1) s^2(w_i) / (N n)$ pooling n sample variance estimators, or
- $\sigma^2(W) \approx MSR = \sum_{i=1}^n \sum_{r=1}^{m_i} (\hat{y}_i w_{ir})^2 / (N-q)$ based on the **residuals** of the OLS regression.

However Kleijnen (2015) used:

"MSR"
$$=\sum_{i=1}^n m_i (\hat{y}_i - \overline{w}_i)^2 / (N-q) = \sum_{i=1}^n m_i \left[\sum_{r=1}^{m_i} (\hat{y}_i - w_{ir}) / m_i \right]^2 / (N-q).$$

The covariance matrix simplifies $\Sigma_w = \sigma^2(w) \mathbf{I}$ and either:

•
$$\sigma^2(W) \approx s^2(w) = \sum_{i=1}^n (m_i - 1) s^2(w_i) / (N - n)$$
 pooling n sample variance estimators, or

•
$$\sigma^2(W) \approx MSR = \sum_{i=1}^n \sum_{r=1}^{m_i} (\hat{y}_i - w_{ir})^2 / (N-q)$$
 based on the **residuals** of the OLS regression.

However Kleijnen (2015) used:

"MSR"
$$=\sum_{i=1}^n m_i (\hat{y}_i - \overline{w}_i)^2 / (N-q) = \sum_{i=1}^n m_i \left[\sum_{r=1}^{m_i} (\hat{y}_i - w_{ir}) / m_i \right]^2 / (N-q).$$

But numerator involves **average residuals** \rightarrow risks underestimating the *SSR* (and *MSR*).

The covariance matrix simplifies $\Sigma_w = \sigma^2(w) \mathbf{I}$ and either:

•
$$\sigma^2(W) \approx s^2(w) = \sum_{i=1}^n (m_i - 1) s^2(w_i) / (N - n)$$
 pooling n sample variance estimators, or

•
$$\sigma^2(W) \approx MSR = \sum_{i=1}^n \sum_{r=1}^{m_i} (\hat{y}_i - w_{ir})^2 / (N-q)$$
 based on the **residuals** of the OLS regression.

However Kleijnen (2015) used:

"MSR"
$$=\sum_{i=1}^{n}m_{i}(\hat{y}_{i}-\overline{w}_{i})^{2}/(N-q)=\sum_{i=1}^{n}m_{i}\left[\sum_{r=1}^{m_{i}}(\hat{y}_{i}-w_{ir})/m_{i}\right]^{2}/(N-q).$$

But numerator involves **average residuals** → risks underestimating the *SSR* (and *MSR*).

Kleijnen's (2015) lack-of-fit F-statistics are incorrect. The **correct**, **general**, **expression** is:

$$F_{N-q,N-n} = \frac{MSR}{s^2(w)} = \frac{\sum_{i=1}^n \sum_{r=1}^{m_i} (w_{ir} - \hat{y}_i)^2 / (N-q)}{\sum_{i=1}^n \sum_{r=1}^{m_i} (w_{ir} - \overline{w}_i)^2 / (N-n)}.$$

With CRN as a Variance Reduction Technique $m_i = m$ and Σ_w approximated by sample covariance so:

$$var(\hat{\beta}_{j}^{OLS}) \approx \sum_{i=1}^{n} \sum_{i'=1}^{n} L_{ji} L_{ji'} \sum_{r=1}^{m} (w_{ir} - \overline{w}_{i}) (w_{i'r} - \overline{w}_{i'}) / [m(m-1)].$$

With CRN as a Variance Reduction Technique $m_i = m$ and Σ_w approximated by sample covariance so:

$$var(\hat{\beta}_{j}^{OLS}) \approx \sum_{i=1}^{n} \sum_{j'=1}^{n} L_{ji} L_{ji'} \sum_{r=1}^{m} (w_{ir} - \overline{w}_{i}) (w_{i'r} - \overline{w}_{i'}) / [m(m-1)].$$

Kleijnen (2015) proposed alternative method inspired by classical text Law (2007).

Simply use mean and deviation of **sample point estimates** $\hat{\beta}_{j;r} = \sum_{i=1}^{n} L_{ji} w_{i;r}$. However:

With CRN as a Variance Reduction Technique $m_i = m$ and Σ_w approximated by sample covariance so:

$$var(\hat{\beta}_{j}^{OLS}) \approx \sum_{i=1}^{n} \sum_{j'=1}^{n} L_{ji} L_{ji'} \sum_{r=1}^{m} (w_{ir} - \overline{w}_{i}) (w_{i'r} - \overline{w}_{i'}) / [m(m-1)].$$

Kleijnen (2015) proposed alternative method inspired by classical text Law (2007).

Simply use mean and deviation of **sample point estimates** $\hat{\beta}_{j;r} = \sum_{i=1}^{n} L_{ji} w_{i;r}$. However:

•
$$\hat{eta}_j^{LAW}=\sum_{r=1}^m\hat{eta}_{j;r}/m=\sum_{r=1}^m\sum_{i=1}^nL_{ji}w_{i;r}/m=\sum_{i=1}^nL_{ji}\overline{w}_i\equiv\hat{eta}_j^{OLS}$$
 and

•
$$var(\hat{\beta}_j^{LAW}) \approx \sum_{r=1}^m (\hat{\beta}_{j;r} - \hat{\beta}_j^{LAW})^2 / [m(m-1)]$$

•
$$var(\hat{\beta}_{j}^{LAW}) \approx \sum_{r=1}^{m} \left[\sum_{i=1}^{n} L_{ji} (w_{ir} - \overline{w}_{i}) \right]^{2} / [m(m-1)]$$

•
$$var(\hat{\beta}_{j}^{LAW}) \approx \sum_{r=1}^{m} \sum_{i=1}^{n} L_{ji}(w_{ir} - \overline{w}_{i}) \sum_{i'=1}^{n} L_{ji'}(w_{i'r} - \overline{w}_{i'}) / [m(m-1)]$$

•
$$var(\hat{\beta}_{i}^{LAW}) \approx \sum_{i=1}^{n} \sum_{i'=1}^{n} L_{ji} L_{ji'} \sum_{r=1}^{m} (w_{ir} - \overline{w}_{i'}) (w_{i'r} - \overline{w}_{i'}) / [m(m-1)] \equiv var(\hat{\beta}_{i}^{OLS}).$$

With CRN as a Variance Reduction Technique $m_i = m$ and Σ_w approximated by sample covariance so:

$$var(\hat{\beta}_{j}^{OLS}) \approx \sum_{i=1}^{n} \sum_{j'=1}^{n} L_{ji} L_{jj'} \sum_{r=1}^{m} (w_{ir} - \overline{w}_{i}) (w_{i'r} - \overline{w}_{i'}) / [m(m-1)].$$

Kleijnen (2015) proposed alternative method inspired by classical text Law (2007).

Simply use mean and deviation of **sample point estimates** $\hat{\beta}_{j;r} = \sum_{i=1}^{n} L_{ji} w_{i;r}$. However:

•
$$\hat{eta}_j^{LAW}=\sum_{r=1}^m\hat{eta}_{j;r}/m=\sum_{r=1}^m\sum_{i=1}^nL_{ji}w_{i;r}/m=\sum_{i=1}^nL_{ji}\overline{w}_i\equiv\hat{eta}_j^{OLS}$$
 and

•
$$var(\hat{\beta}_j^{LAW}) \approx \sum_{r=1}^m (\hat{\beta}_{j;r} - \hat{\beta}_j^{LAW})^2 / [m(m-1)]$$

•
$$var(\hat{\beta}_{j}^{LAW}) \approx \sum_{r=1}^{m} \left[\sum_{i=1}^{n} L_{ji}(w_{ir} - \overline{w}_{i}) \right]^{2} / [m(m-1)]$$

•
$$var(\hat{\beta}_{j}^{LAW}) \approx \sum_{r=1}^{m} \sum_{i=1}^{n} L_{ji}(w_{ir} - \overline{w}_{i}) \sum_{i'=1}^{n} L_{ji'}(w_{i'r} - \overline{w}_{i'}) / [m(m-1)]$$

•
$$var(\hat{\beta}_{j}^{LAW}) \approx \sum_{i=1}^{n} \sum_{i'=1}^{n} L_{ji}L_{ji'} \sum_{r=1}^{m} (w_{ir} - \overline{w}_{i'})(w_{i'r} - \overline{w}_{i'})/[m(m-1)] \equiv var(\hat{\beta}_{j}^{OLS}).$$

The two methods are identical, not alternatives.

Rarely do our **combat simulation output metrics** conform to a Normal distribution.

Rarely do our combat simulation output metrics conform to a Normal distribution.

An approach suggested by Kleijnen (2015) is to use Jack-Knifing (Tukey, 1958):

$$J_{j;r}=m\hat{\beta}_j-(m-1)\hat{\beta}_{j;-r} \text{ where } \hat{\beta}_{j;-r}=\sum_{i=1}^n L_{ji}\overline{w}_{i;-r} \text{ and } \overline{w}_{i;-r}=\sum_{r'=1:r\neq r}^m \frac{w_{ir'}}{m-1}.$$

Rarely do our combat simulation output metrics conform to a Normal distribution.

An approach suggested by Kleijnen (2015) is to use Jack-Knifing (Tukey, 1958):

$$J_{j;r}=m\hat{\beta}_j-(m-1)\hat{\beta}_{j;-r} \text{ where } \hat{\beta}_{j;-r}=\sum_{i=1}^n L_{ji}\overline{w}_{i;-r} \text{ and } \overline{w}_{i;-r}=\sum_{r'=1;r\neq r}^m \frac{w_{ir'}}{m-1}.$$

However:

$$J_{j;r} = m \sum_{i=1}^{n} L_{ji} \overline{w}_{i} - (m-1) \sum_{i=1}^{n} L_{ji} \overline{w}_{i;-r}$$

$$= \sum_{i=1}^{n} L_{ji} \left(\sum_{r'=1}^{m} w_{ir'} - \sum_{r'=1;r'\neq r}^{m} w_{ir'} \right) = \sum_{i=1}^{n} L_{ji} w_{ir} = \hat{\beta}_{j;r}^{OLS}.$$

Rarely do our combat simulation output metrics conform to a Normal distribution.

An approach suggested by Kleijnen (2015) is to use Jack-Knifing (Tukey, 1958):

$$J_{j;r}=m\hat{\beta}_j-(m-1)\hat{\beta}_{j;-r} \text{ where } \hat{\beta}_{j;-r}=\sum_{i=1}^n L_{ji}\overline{w}_{i;-r} \text{ and } \overline{w}_{i;-r}=\sum_{r'=1;r\neq r}^m \frac{w_{ir'}}{m-1}.$$

However:

$$J_{j;r} = m \sum_{i=1}^{n} L_{ji} \overline{w}_{i} - (m-1) \sum_{i=1}^{n} L_{ji} \overline{w}_{i;-r}$$

$$= \sum_{i=1}^{n} L_{ji} \left(\sum_{r'=1}^{m} w_{ir'} - \sum_{r'=1;r'\neq r}^{m} w_{ir'} \right) = \sum_{i=1}^{n} L_{ji} w_{ir} = \hat{\beta}_{j;r}^{OLS}.$$

Rarely do our **combat simulation output metrics** conform to a Normal distribution.

An approach suggested by Kleijnen (2015) is to use Jack-Knifing (Tukey, 1958):

$$J_{j;r}=m\hat{\beta}_j-(m-1)\hat{\beta}_{j;-r} \text{ where } \hat{\beta}_{j;-r}=\sum_{i=1}^n L_{ji}\overline{w}_{i;-r} \text{ and } \overline{w}_{i;-r}=\sum_{r'=1;r\neq r}^m \frac{w_{ir'}}{m-1}.$$

However:

$$J_{j;r} = m \sum_{i=1}^{n} L_{ji} \overline{w}_{i} - (m-1) \sum_{i=1}^{n} L_{ji} \overline{w}_{i;-r}$$

$$= \sum_{i=1}^{n} L_{ji} \left(\sum_{r'=1}^{m} w_{ir'} - \sum_{r'=1;r'\neq r}^{m} w_{ir'} \right) = \sum_{i=1}^{n} L_{ji} w_{ir} = \hat{\beta}_{j;r}^{OLS}.$$

So the r-th jackknifed pseuduovalue $J_{j;r}$ is identical to OLS estimator based on r-th replication \mathbf{w}_r .

Regression Summary

If output variance is not homogeneous (depends on design points x_i) and if output is not independent (through CRN) and not normally distributed (often with combat simulations) ...

Regression Summary

- If output variance is not homogeneous (depends on design points x_i) and if output is not independent (through CRN) and not normally distributed (often with combat simulations) ...
- then Law (2007) approach is in fact identical to both OLS and Jack-Knifing in Kleijnen (2015).

Regression Summary

- If output variance is not homogeneous (depends on design points x_i) and if output is not independent (through CRN) and not normally distributed (often with combat simulations) ...
- then Law (2007) approach is in fact identical to both OLS and Jack-Knifing in Kleijnen (2015).
- Confidence intervals for the regression coefficients can be calculated from:

$$\hat{\beta}_{j} = \sum_{i=1}^{n} L_{ji}\overline{w}_{i}, \quad j = 1, \dots, q$$

$$var(\hat{\beta}_{j}) \approx \sum_{i=1}^{n} \sum_{j'=1}^{n} L_{ji}L_{ji'} \sum_{r=1}^{m} (w_{ir} - \overline{w}_{i})(w_{i'r} - \overline{w}_{i'})/[m(m-1)], \quad j = 1, \dots, q$$

$$L = (X'X)^{-1}X' \quad \text{and} \quad \overline{w}_{i} = \sum_{r=1}^{m} w_{ir}/m, \quad i = 1, \dots, n.$$

Analysis of Alternatives (AoA) more common. How to characterise sensitive parameters here?

Analysis of Alternatives (AoA) more common. How to characterise sensitive parameters here?

- Individual alternative simulation output might be sensitive, but comparatively insensitive.
- Logistic regression (two alternative case) $P(Z = 1|\mathbf{x}) = (1 + \exp[-\beta^T \mathbf{x}])^{-1}$?
- Generate sample data $z_i=1$ if reject $H_0: \mu_{1i}=\mu_{0i}$ in favour of $H_1: \mu_{1i}>\mu_{0i}$.
- $odds(\mathbf{x}) = P(Z = 1|\mathbf{x})/[1 P(Z = 1|\mathbf{x})]$ and $\exp(\hat{\beta}_i) = odds(\mathbf{x} + \mathbf{e}_i)/odds(\mathbf{x})$.

Analysis of Alternatives (AoA) more common. How to characterise sensitive parameters here?

- Individual alternative simulation output might be sensitive, but comparatively insensitive.
- Logistic regression (two alternative case) $P(Z = 1|\mathbf{x}) = (1 + \exp[-\beta^T \mathbf{x}])^{-1}$?
- Generate sample data $z_i = 1$ if reject H_0 : $\mu_{1i} = \mu_{0i}$ in favour of H_1 : $\mu_{1i} > \mu_{0i}$.
- $odds(\mathbf{x}) = P(Z = 1|\mathbf{x})/[1 P(Z = 1|\mathbf{x})]$ and $exp(\hat{\beta}_i) = odds(\mathbf{x} + \mathbf{e}_i)/odds(\mathbf{x})$.

Simple counterexample:

Analysis of Alternatives (AoA) more common. How to characterise sensitive parameters here?

- Individual alternative simulation output might be sensitive, but comparatively insensitive.
- Logistic regression (two alternative case) $P(Z = 1|\mathbf{x}) = (1 + \exp[-\beta^T \mathbf{x}])^{-1}$?
- Generate sample data $z_i=1$ if reject $H_0: \mu_{1i}=\mu_{0i}$ in favour of $H_1: \mu_{1i}>\mu_{0i}$.
- $odds(\mathbf{x}) = P(Z = 1|\mathbf{x})/[1 P(Z = 1|\mathbf{x})]$ and $\exp(\hat{\beta}_j) = odds(\mathbf{x} + \mathbf{e}_j)/odds(\mathbf{x})$.

Simple counterexample:

- If $P(Z=1|\mathbf{x})=1/3$ and $\hat{\beta}_i=1 \to odds(\mathbf{x})=1$: 2 and $odds(\mathbf{x}+\mathbf{e}_i)=2.72$: 2 = 1.36: 1.
- Preference (decision) has changed from alternative 0 to alternative 1.
- If, however, $P(Z=1|\mathbf{x})=2/3$ and $\hat{\beta}_j=1$. Then $odds(\mathbf{x})=2$: 1 and $odds(\mathbf{x}+\mathbf{e}_j)=5.44$: 1.
- Preference (decision) has not changed from alternative 1.

Analysis of Alternatives (AoA) more common. How to characterise sensitive parameters here?

- Individual alternative simulation output might be sensitive, but comparatively insensitive.
- Logistic regression (two alternative case) $P(Z = 1|\mathbf{x}) = (1 + \exp[-\beta^T \mathbf{x}])^{-1}$?
- Generate sample data $z_i=1$ if reject $H_0: \mu_{1i}=\mu_{0i}$ in favour of $H_1: \mu_{1i}>\mu_{0i}$.
- $odds(\mathbf{x}) = P(Z = 1|\mathbf{x})/[1 P(Z = 1|\mathbf{x})]$ and $\exp(\hat{\beta}_j) = odds(\mathbf{x} + \mathbf{e}_j)/odds(\mathbf{x})$.

Simple counterexample:

- If $P(Z=1|\mathbf{x})=1/3$ and $\hat{\beta}_i=1 \to odds(\mathbf{x})=1$: 2 and $odds(\mathbf{x}+\mathbf{e}_i)=2.72$: 2 = 1.36: 1.
- Preference (decision) has changed from alternative 0 to alternative 1.
- If, however, $P(Z=1|\mathbf{x})=2/3$ and $\hat{\beta}_j=1$. Then $odds(\mathbf{x})=2$: 1 and $odds(\mathbf{x}+\mathbf{e}_j)=5.44$: 1.
- Preference (decision) has not changed from alternative 1.

Unlikely that logistic regression (or **multinomial regression** for the general K > 2 case) will work.

Ranking Sensitivity Measure

Score-based method of Villacorta & Sáez (2015):

$$s_{ki} = \sum_{j=k+1}^{K} z_{kji} \quad \text{where} \quad z_{kji} = \begin{cases} +1, & \text{if accept } H_1: \mu_{ki} > \mu_{ji} \\ 0, & \text{if accept } H_0: \mu_{ki} = \mu_{ji} \\ -1, & \text{if accept } H_1: \mu_{ki} < \mu_{ji} \end{cases}$$

Ranking Sensitivity Measure

Score-based method of Villacorta & Sáez (2015):

$$s_{ki} = \sum_{j=k+1}^{K} z_{kji} \quad \text{where} \quad z_{kji} = \begin{cases} +1, & \text{if accept } H_1 : \mu_{ki} > \mu_{ji} \\ 0, & \text{if accept } H_0 : \mu_{ki} = \mu_{ji} \\ -1, & \text{if accept } H_1 : \mu_{ki} < \mu_{ji} \end{cases}$$

How to measure **similarity/distance** between \mathbf{s}_i and $\mathbf{s}_{i'}$?

- Convert to ranks: $\sigma_i(k) = rank(s_{ki}, \mathbf{s}_i)$ so $\sigma_i(\cdot)$ is a permutation of $\{1, \ldots, K\}$.
- Weighted Spearman's Footrule: $\delta_{ii'}^F = \sum_{k=1}^K d_{ii'k} p_{ii'k} |\sigma_i(k) \sigma_{i'}(k)|$. (Dolgun *et al.*, 2018).
- Inter-rater disagreement: $d_{ii'k} = \left(\frac{|s_{ki} s_{ki'}|}{2(K-1)}\right)^p$ (Gwet, 2014).
- Head or Tail Position: $p_{ij'k} = \left(\frac{\sigma_i(k) + \sigma_{j'}(k)}{2}\right)^{-1/K}$ (Kumar & Vassilvitskii, 2000).

Ranking Sensitivity Measure

Score-based method of Villacorta & Sáez (2015):

$$s_{ki} = \sum_{j=k+1}^{K} z_{kji}$$
 where $z_{kji} = \begin{cases} +1, & \text{if accept } H_1: \mu_{ki} > \mu_{ji} \\ 0, & \text{if accept } H_0: \mu_{ki} = \mu_{ji} \\ -1, & \text{if accept } H_1: \mu_{ki} < \mu_{ji} \end{cases}$

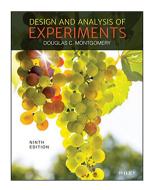
How to measure **similarity/distance** between \mathbf{s}_i and $\mathbf{s}_{i'}$?

- Convert to ranks: $\sigma_i(k) = rank(s_{ki}, s_i)$ so $\sigma_i(\cdot)$ is a permutation of $\{1, \ldots, K\}$.
- Weighted Spearman's Footrule: $\delta_{ii'}^F = \sum_{k=1}^K d_{ii'k} p_{ii'k} |\sigma_i(k) \sigma_{i'}(k)|$. (Dolgun *et al.*, 2018).
- Inter-rater disagreement: $d_{ii'k} = \left(\frac{|s_{ki} s_{ki'}|}{2(K-1)}\right)^p$ (Gwet, 2014).
- Head or Tail Position: $p_{ii'k} = \left(\frac{\sigma_i(k) + \sigma_{i'}(k)}{2}\right)^{-1/K}$ (Kumar & Vassilvitskii, 2000).

This provides a scalar measure of **sensitivity of ranking vector** between two design points, \mathbf{x}_i and $\mathbf{x}_{i'}$.

How do we use that to isolate the sensitivity of ranking vector to an individual parameter x_i?

	X .1	X .2		$\mathbf{x}_{.j}$	• • •	$\mathbf{x}_{.K}$	У
x _{1.}		• • •		• • •	• • •	• • •	
		• • •	• • •	• • •	• • •	• • •	
$\mathbf{x}_{i_j+.}$	<i>X_{ij}</i> 1	x_{i_j2}	• • •	+1	• • •	x_{i_jK}	y_{i_j+}
		• • •	• • •	• • •	• • •	• • •	
\mathbf{x}_{i_j}	<i>Xi_j</i> 1	x_{i_j2}	• • •	-1	• • •	x_{i_jK}	y _{ij} _
		• • •	• • •		• • •		
$\mathbf{x}_{2^{K}}$.		• • •	• • •	• • •	• • •	• • •	



	x .1	X .2	• • •	$\mathbf{x}_{.j}$	• • •	$\mathbf{x}_{.K}$	У
$\mathbf{x}_{1.}$				• • •	• • •		
• • •		• • •		• • •	• • •	• • •	
$\mathbf{x}_{i_j+.}$	<i>X</i> _{<i>i</i>_j 1}	x_{i_j2}	• • •	+1	• • •	x_{i_jK}	y_{i_j+}
• • •	• • • •	• • •	• • •	• • •	• • •	• • •	
\mathbf{x}_{i_j} .	<i>X</i> _{<i>i</i>_j 1}	x_{i_j2}	• • •	-1	• • •	x_{i_jK}	y _{ij} _
• • •					• • •		
\mathbf{X}_{2}^{κ} .							

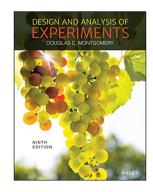
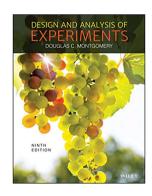


Table: Full Factorial Design for Univariate Response

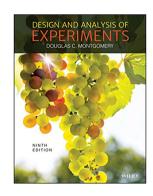
• For **orthogonal** designs $\hat{\beta} = (X'X)^{-1}X'$ **y** becomes $\hat{\beta}_j = \mathbf{x}'_{.j}\mathbf{y}/2^K$.

	x .1	X .2	• • •	$\mathbf{x}_{.j}$	• • •	$\mathbf{x}_{.K}$	У
$\mathbf{x}_{1.}$				• • •	• • •		
• • •							
$\mathbf{x}_{i_j+.}$	<i>x</i> _{ij} 1	<i>x</i> _{ij2}		+1	• • •	x_{i_jK}	<i>y</i> _{ij} +
• • •		• • •	• • •		• • •	• • •	
\mathbf{x}_{i_j} .	<i>X_{ij}</i> 1	<i>X</i> _{<i>i</i>_j2}		-1	• • •	x_{i_jK}	Уij—
• • •		• • •	• • •	• • •	• • •	• • •	
\mathbf{X}_{2}^{κ} .							



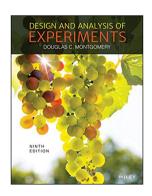
- For **orthogonal** designs $\hat{\beta} = (X'X)^{-1}X'$ **y** becomes $\hat{\beta}_i = \mathbf{x}'_i\mathbf{y}/2^K$.
- For **balanced** designs, can express as $\hat{\beta}_j = \frac{1}{2^{K-1}} \sum_i (y_{i_j+} y_{i_j-}) = \frac{1}{2^{K-1}} \sum_i \delta_{i_j+:i_j-}$.

	x .1	X .2	• • •	$\mathbf{x}_{.j}$	• • •	$\mathbf{x}_{.K}$	У
$\mathbf{x}_{1.}$				• • •		• • •	
$\mathbf{x}_{i_j+.}$	<i>X</i> _{<i>i</i>_j 1}	x_{i_j2}		+1	• • •	x_{i_jK}	$y_{i_j}+$
• • •		• • •	• • •		• • •		
\mathbf{x}_{i_j} .	<i>X</i> _{<i>i</i>_j 1}	x_{i_j2}		-1	• • •	x_{i_jK}	Уij—
• • •					• • •		
\mathbf{X}_{2}^{K}							



- For **orthogonal** designs $\hat{\beta} = (X'X)^{-1}X'$ **y** becomes $\hat{\beta}_j = \mathbf{x}'_{.j}\mathbf{y}/2^K$.
- For **balanced** designs, can express as $\hat{\beta}_j = \frac{1}{2^{K-1}} \sum_i (y_{i_j+} y_{i_j-}) = \frac{1}{2^{K-1}} \sum_i \delta_{i_j+;i_j-}$.
- ullet Key observations: Only involves **simulation output** $oldsymbol{\delta}$; **other parameters** *ceteris paribus*.

	x .1	X .2	• • •	$\mathbf{x}_{.j}$	• • •	$\mathbf{x}_{.K}$	У
$\mathbf{x}_{1.}$				• • •		• • •	
$\mathbf{x}_{i_j+.}$	<i>X</i> _{<i>i</i>_j 1}	x_{i_j2}		+1	• • •	x_{i_jK}	$y_{i_j}+$
• • •		• • •	• • •		• • •		
\mathbf{x}_{i_j} .	<i>X</i> _{<i>i</i>_j 1}	x_{i_j2}		-1	• • •	x_{i_jK}	Уij—
• • •					• • •		
\mathbf{X}_{2}^{K}							



- For **orthogonal** designs $\hat{\boldsymbol{\beta}} = (X'X)^{-1}X'\mathbf{y}$ becomes $\hat{\beta}_j = \mathbf{x}'_{.j}\mathbf{y}/2^K$.
- For **balanced** designs, can express as $\hat{\beta}_j = \frac{1}{2^{K-1}} \sum_i (y_{i_j+} y_{i_j-}) = \frac{1}{2^{K-1}} \sum_i \delta_{i_j+;i_j-}$.
- ullet Key observations: Only involves **simulation output** $oldsymbol{\delta}$; **other parameters** *ceteris paribus*.
- For Full Factorial design **simply replace** $\delta_{i_j+;i_j-}$ with $\delta_{i_j+;i_j-}^F = \sum_{k=1}^K w_{i_j+;i_j-;k} |\sigma_{i_j+}(k) \sigma_{i_j-}(k)|$.

	x .1	X .2	• • •	$\mathbf{x}_{.j}$		$\mathbf{x}_{.K-p}$	$\mathbf{x}_{.K-p+1}$		$\mathbf{x}_{.K}$	У
x _{1.}						I				
$\mathbf{x}_{i_j+.}$	<i>x</i> _{ij} 1	x_{i_j2}		+1	• • •	x_{i_jK-p}	$X_{i_j+K-p+1}$		x_{i_j+K}	y_{i_j+}
		• • •	• • •	• • •	• • •			• • •		
\mathbf{x}_{i_j} .	<i>X_{ij}</i> 1	x_{i_j2}	• • •		• • •	x_{i_jK-p}	$X_{ij}-K-p+1$	• • •	x_{i_j-K}	Уij—
• • • •	• • •	• • •		• • •	• • •	• • •		• • •	• • •	
$\mathbf{x}_{2}^{\kappa-\rho}$.				• • •	• • •		•••	• • •	• • • •	

						_				
	x .1	X .2		$\mathbf{x}_{.j}$		$\mathbf{x}_{.K-p}$	$\mathbf{x}_{.K-p+1}$	• • •	$\mathbf{x}_{.K}$	у
x _{1.}		• • •								
			• • •	• • •						
$\mathbf{x}_{i_j+.}$	<i>x</i> _{ij} 1	x_{i_j2}	• • •	+1	• • •	x_{i_jK-p}	$x_{i_j+K-p+1}$	• • •	x_{i_j+K}	y_{i_j+}
			• • •		• • •			• • •		
\mathbf{x}_{i_j}	<i>X_{ij}</i> 1	x_{i_j2}	• • •	-1	• • •	x_{i_jK-p}	$X_{i_j-K-p+1}$	• • •	x_{i_j-K}	y _{ij} _
		• • •				• • • •			• • •	
$\mathbf{x}_{2}^{\kappa-\rho}$.					• • •		•••		• • • •	

• For orthogonal and balanced designs, **still**
$$\hat{\beta}_j = \frac{1}{2^{K-\rho-1}} \sum_i (y_{i_j+} - y_{i_j-}) = \frac{1}{2^{K-\rho-1}} \sum_i \delta_{i_j+;i_j-}$$
.

						_				
	x .1	X .2		$\mathbf{x}_{.j}$		$\mathbf{x}_{.K-p}$	$\mathbf{x}_{.K-p+1}$	• • •	$\mathbf{x}_{.K}$	У
x _{1.}		• • •								
			• • •	• • •						
$\mathbf{x}_{i_j+.}$	<i>X</i> _{<i>i</i>_j 1}	x_{i_j2}	• • •		• • •	x_{i_jK-p}	$X_{i_j+K-p+1}$	• • •	x_{i_j+K}	$y_{i_j}+$
			• • •		• • •			• • •		
\mathbf{x}_{i_j}	<i>X</i> _{<i>i</i>_j 1}	x_{i_j2}	• • •	-1	• • •	x_{i_jK-p}	$x_{i_j-K-p+1}$	• • •	x_{i_j-K}	y _{ij} _
			• • •		• • •					
$\mathbf{x}_{2}^{\kappa-\rho}$.					• • •		•••		• • • •	

- For orthogonal and balanced designs, **still** $\hat{\beta}_j = \frac{1}{2^{K-p-1}} \sum_i (y_{i,+} y_{i,-}) = \frac{1}{2^{K-p-1}} \sum_i \delta_{i,+;i,-}$.
- But now **careful enumeration** of pairs of rows for $\delta_{i_1+i_2}^F$ for each parameter $j=1,\ldots,K$.

				_		_				
	x .1	X .2	• • •	$\mathbf{x}_{.j}$	• • •	$\mathbf{x}_{.K-p}$	$\mathbf{x}_{.K-p+1}$		$\mathbf{x}_{.K}$	У
x _{1.}									• • •	
		• • •	• • •						• • •	
$\mathbf{x}_{i_j+.}$	<i>X</i> _{<i>i</i>_j1}	x_{i_j2}	• • •	+1	• • •	x_{i_jK-p}	$x_{i_j+K-p+1}$	• • •	x_{i_j+K}	y_{i_j+}
			• • •		• • •			• • •	• • •	
\mathbf{x}_{i_j} .	<i>X</i> _{<i>i</i>_j 1}	x_{i_j2}	• • •	-1	• • •	x_{i_jK-p}	$x_{i_j-K-p+1}$	• • •	x_{i_j-K}	<i>y_{ij}</i> —
$\mathbf{x}_{2}^{\kappa-p}$.		• • •			• • •			• • •	• • • •	

- For orthogonal and balanced designs, **still** $\hat{\beta}_i = \frac{1}{2K-p-1} \sum_i (y_{i,+} y_{i,-}) = \frac{1}{2K-p-1} \sum_i \delta_{i,+;i,-}$.
- But now **careful enumeration** of pairs of rows for $\delta_{i,+:i,-}^F$ for each parameter $j=1,\ldots,K$.
- For first K p parameters, **simply ignore** remaining p columns and $i_i + i_j c$ hosen as before.

	x .1	X .2		$\mathbf{x}_{.j}$		$\mathbf{x}_{.K-p}$	$\mathbf{x}_{.K-p+1}$	• • •	$\mathbf{x}_{.K}$	У
x _{1.}		• • •								
			• • •	• • •						
$\mathbf{x}_{i_j+.}$	<i>X</i> _{<i>i</i>_j 1}	x_{i_j2}	• • •		• • •	x_{i_jK-p}	$X_{i_j+K-p+1}$	• • •	x_{i_j+K}	$y_{i_j}+$
			• • •		• • •			• • •		
\mathbf{x}_{i_j}	<i>X</i> _{<i>i</i>_j 1}	x_{i_j2}	• • •	-1	• • •	x_{i_jK-p}	$x_{i_j-K-p+1}$	• • •	x_{i_j-K}	y _{ij} _
			• • •		• • •					
$\mathbf{x}_{2}^{\kappa-\rho}$.					• • •		•••		• • • •	

- For orthogonal and balanced designs, **still** $\hat{\beta}_i = \frac{1}{2K-p-1} \sum_i (y_{i,+} y_{i,-}) = \frac{1}{2K-p-1} \sum_i \delta_{i,+;i,-}$.
- But now **careful enumeration** of pairs of rows for δ_{h+j}^F for each parameter $j=1,\ldots,K$.
- For first K p parameters, **simply ignore** remaining p columns and $i_i + i_j$ chosen as before.
- For K p + j-th parameter, use its column for one of the first K p columns whose parameter was used to construct it (via the generator words).

Summary

Summary

Sensitivity Analysis via low-order polynomial meta-models fit using OLS regression and Factorial designs:

- Combat simulations often depart from (all) standard NIID assumptions:
 - Non-independently distributed (via use of CRN).
 - Non-identically distributed (variance depends on design point).
 - Non-normally distributed (skewness).
- Kleijnen (2015) text suggested different remedies, but they are actually equivalent.
- Kleijnen (2015) also incorrectly derived lack-of-fit F-statistics in white-noise case.

Summary

Sensitivity Analysis via low-order polynomial meta-models fit using OLS regression and Factorial designs:

- Combat simulations often depart from (all) standard NIID assumptions:
 - Non-independently distributed (via use of CRN).
 - Non-identically distributed (variance depends on design point).
 - Non-normally distributed (skewness).
- Kleijnen (2015) text suggested different remedies, but they are actually equivalent.
- Kleijnen (2015) also incorrectly derived lack-of-fit F-statistics in white-noise case.

Sensitivity Analysis of Analysis of Alternatives new research topic:

- Borrow distance metrics from Information Retrieval algorithm comparisons.
- ullet Exploit δ -structure and *ceteris paribus* principle of Full Factorial designs.
- Future work: test effectiveness of approach; examine other orthogonal/balanced designs; improve ranking sensitivity measure.